Initial Algebras of Domains via Quotient
Inductive-Inductive Types

Simcha van Collem, Niels van der Weide, Herman Geuvers

20 June 2025

Radboud University Nijmegen

Programming language semantics

e Domain theory is used to give semantics to programming
languages
e Example

e Fixpoints for general recursion
e Partial functions
e Lazy evaluation
e Nondeterminism

What about arbitrary algebraic effects?

e Algebraic effects have

e Algebraic operations
e An inequational theory

e How can we construct them in domain theory?

What about arbitrary algebraic effects?

e Algebraic effects have

e Algebraic operations
e An inequational theory

e How can we construct them in domain theory?
Solution: construct them as initial domain algebras

These domain algebras should be

e A domain
e Have the operations

e Obey the inequational theory

Contributions

e Framework for

e describing algebraic effects

e constructing them as initial algebras via a QIIT
e Examples:

e Partiality!
e Powerdomain
e Coalesced sum, Smash products, Coequalizer, ...

e Formalized in Cubical Agda

LAltenkirch, Danielsson, and Kraus, “Partiality, Revisited - The Partiality
Monad as a Quotient Inductive-Inductive Type”.

Directed Complete Partial Order (DCPO)

e DCPO: set D with information ordering C

e Smaller elements contain less information

e Every directed family o : | — D has a supremum | |..; «(/)

Directed Complete Partial Order (DCPO)

e DCPO: set D with information ordering C

e Smaller elements contain less information

e Every directed family o : | — D has a supremum | |..; «(/)
e Generalizes w-CPO, where every increasing sequence
ap C a3 C ... has a supremum
e The elements in the family are consistently moving upward

towards more information

e Programs may not terminate
e So a program has either no outcome or a specified result
e Given DCPO D, we want a DCPO D/, such that
e For each result d in D, we have the same result in D ; written

as 7)(d)
e We have a result for non-termination: L in D
e Non-termination gives the least information

Summary:
Two operations:

e n:D— D)
e | :D,

One inequality: tten
e | [x

— — e

e Non-termination gives the least information

Nondeterminism

e Nondeterministic programs could have multiple results

e So a program has a set of possible results
e Given a DCPO D, we want a DCPO P(D) of possible results,
such that
e For each result d in D, we have the result set with a unique
result {d} in P(D)
e Given result sets s1, s in P(D), we can combine their results
as sy Usp in P(D)
e The union operation is
e commutative and associative: order of combining does not

matter
e idempotent: combining a result set with itself, adds nothing

Nondeterminism

e Nondeterministic programs could have multiple results
Summary:
Two operations:

e {~}:D—P(D)
e U:P(D)— P(D)— P(D) e

ilts,

Four inequalities:
ts

e xUyL yUx
e (xUy)uzL xU(yUz)
e xUxL x

1
o xL xUx .

Algebras

We have
e A DCPO

e with Scott continuous operations

e operations of the form X8 x C — X

. - . Signature *
e respecting certain inequalities

We call this a > -algebra

e morphisms are Scott continuous maps commuting with the
operations

e this forms a category > -Alg
Goal:

e construct the initial >-algebra using a QII'T

Algebras

We have

a A DCPO
Scott continuity:
Operations should be monotone and send suprema to suprema, e.g.

Lot} =Lty
il il

Ve v o o
(<]

e morphisms are Scott continuous maps commuting with the
operations
e this forms a category > -Alg

Goal:

e construct the initial >-algebra using a QII'T

Algebras

We have
e A DCPO

e with Scott continuous operations

e operations of the form X8 x C — X

. - . Signature *
e respecting certain inequalities

We call this a > -algebra

e morphisms are Scott continuous maps commuting with the
operations

e this forms a category > -Alg
Goal:

e construct the initial >-algebra using a QII'T

Quotient Inductive-Inductive Type (QIIT)

e Combination of QIT and IIT:

e Define a type by specifying constructors and equations
e Define a type A and a type family on A simultaneously

e Approach used by Altenkirch at al.? to construct the partiality
effect

e We do it for arbitrary signature X

2Altenkirch, Danielsson, and Kraus, “Partiality, Revisited - The Partiality
Monad as a Quotient Inductive-Inductive Type”.

Powerdomain QIIT

We define P(D) : U and C: P(D) — P(D) — U simultaneously
via a QIIT as follows:

e We have constructors expressing that C is a preorder
e We add a path constructor to make it a partial order
e We add constructors to make it directed complete

e Each operation gives rise to a constructor of P(D)

e We have a path constructor to express the continuity of each
operation

e Each inequality gives rise to a constructor for C

10

Powerdomain QIIT

We define P(D) : U and C: P(D) — P(D) — U simultaneously
via a QIIT as follows:

e We have constructors expressing that C is a preorder

e We add a path constructor to make it a partial order

e We add constructors to make it directed complete

e Each operation gives rise to a constructor of P(D)

e We have a path constructor to express the continuity of each
operation

e Each inequality gives rise to a constructor for C

10

Powerdomain QIIT

We define P(D) : U and C: P(D) — P(D) — U simultaneously
via a QIIT as follows:

e We have constructors expressing that C is a preorder

e We add a path constructor to make it a partial order

e We add constructors to make it directed complete

e Each operation gives rise to a constructor of P(D)

e We have a path constructor to express the continuity of each
operation

e Each inequality gives rise to a constructor for C

10

Powerdomain QIIT

We define P(D) : U and C: P(D) — P(D) — U simultaneously
via a QIIT as follows:

e We have constructors expressing that C is a preorder

e We add a path constructor to make it a partial order

e We add constructors to make it directed complete

e Each operation gives rise to a constructor of P(D)

e We have a path constructor to express the continuity of each
operation

e Each inequality gives rise to a constructor for C

10

Powerdomain QIIT

We define P(D) : U and C: P(D) — P(D) — U simultaneously
via a QIIT as follows:

e We have constructors expressing that C is a preorder

e We add a path constructor to make it a partial order

e We add constructors to make it directed complete

e Each operation gives rise to a constructor of P(D)

e We have a path constructor to express the continuity of each
operation

e Each inequality gives rise to a constructor for C

10

Powerdomain QIIT

We define P(D) : U and C: P(D) — P(D) — U simultaneously
via a QIIT as follows:

e We have constructors expressing that C is a preorder
e We add a path constructor to make it a partial order
e We add constructors to make it directed complete
e Each operation gives rise to a constructor of P(D)

e We have a path constructor to express the continuity of each
operation

Each inequality gives rise to a constructor for C

10

Powerdomain QIIT

We define P(D) : U and C: P(D) — P(D) — U simultaneously
via a QIIT as follows:

e We have constructors expressing that C is a preorder

e We add a path constructor to make it a partial order

e We add constructors to make it directed complete

e Each operation gives rise to a constructor of P(D)

e We have a path constructor to express the continuity of each
operation

e Each inequality gives rise to a constructor for C

10

Powerdomain QIIT (DCPO constructors)

isProp(x C y)

xX=y isSet(P(D))

11

Powerdomain QIIT (DCPO constructors)

isProp(x C y)

xX=y isSet(P(D))

LI = I1a.i—p(p) isDirected(ar) — P(D)

11

Powerdomain QIIT (DCPO constructors)

isProp(x C y)

xX=y isSet(P(D))
LI = I1a.i—p(p) isDirected(ar) — P(D)
a:l — P(D) 0 : isDirected(«)

H a(i) C L, afi)

il

a:l— P(D) 0 : isDirected (o)

H isUpperbound(v,a) — ||, (i) C v
v:P(D)

11

Powerdomain QIIT (Operations)

{-}:D — P(D) U:P(D)— P(D) — P(D)

12

Powerdomain QIIT (Operations)

{-}:D — P(D) U:P(D)— P(D) — P(D)

ar,az 1 — P(D) isDirected(c1) isDirected ()

Ly ax () UL ao(i) = L;y ca (i) U aa(i)

12

Powerdomain QIIT (Operations)

{-}:D — P(D) U:P(D)— P(D) — P(D)

ar,az 1 — P(D) isDirected(c1) isDirected ()

Ly ax () UL ao(i) = L;y ca (i) U aa(i)

a:l—D isDirected(«)

{Uiy ()} = Ui{e()}

12

Powerdomain QIIT (Inequalities)

xUyCyUx (xUy)UuzC xU(yUz)

xUxC x x E xUx

13

General QUIT

We define Initialy : ¢/ and C: Initialy — Initialy — U as a QT

e Constructors for DCPO structure stay the same

e For every operation named a in >, we add a constructor
app, : (Initialy)® x C — Initialy and constructors for its
continuity

e For every inequality in X, we add a constructor

14

Different notion of continuity

Recall: f: D — E is continuous if

e f is monotone

o (L)) =L;y (i)

3Jong and Escardé, "Domain Theory in Constructive and Predicative
Univalent Foundations”.

ii5)

Different notion of continuity

Recall: f: D — E is continuous if

e f is monotone

o (L (i) =L;y (i)

Need monotonicity to show that f o « is directed

Instead, we define continuity as follows>:

o f(|l;.; a(i)) is a supremum for f o &

3Jong and Escardé, "Domain Theory in Constructive and Predicative
Univalent Foundations”.

ii5)

Actual constructors for operations and their continuity

app, : (Initialz)B x C — Initialy

16

Actual constructors for operations and their continuity

app, : (Initialz)B x C — Initialy

a:l— (Initial):)B x C d @ isDirected(«)

Haploa) C app,(L; o)

16

Actual constructors for operations and their continuity

app, : (Initialz)B x C — Initialy

a:l— (Initial):)B x C d @ isDirected(«)

Haploa) C app,(L; o)

o : | — (Initialy)B x C d @ isDirected(a)
H isUpperbound(v, app, o a) — app,(L;; a(i)) C v

v:Initialy

16

Elimination principles are as expected:

e For every Y -algebra X, there exists an algebra morphism
Initialy — X
e Using the induction principle, we can show uniqueness

e Thus Initialy in indeed initial in X-Alg

17

Free algebras

To construct the free X-algebra for a DCPO D:

o Define signature ¥ + D, by adding D — X

Consider Initialy p
e This is a X-algebra if we forget about the inclusion
So F(D) = (Initialzﬂp)*

np : D — Initialy . p is given by the inclusion of Initialyp

18

Conclusions

Framework for describing algebraic effects via

e Operations
e Inequalities

Construct them as initial algebras via a QIIT

Free algebras

Partiality, Powerdomain, Smash products, Coequalizers, ...

Formalized in Cubical Agda

19

https://simchavc.github.io/artifacts/qiits/Paper.html

References

Altenkirch, Thorsten, Nils Anders Danielsson, and Nicolai Kraus. “Partiality, Revisited - The Partiality
Monad as a Quotient Inductive-Inductive Type”. In: Foundations of Software Science and Computation
Structures - 20th International Conference, FOSSACS 2017, Held as Part of the European Joint Conferences
on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Ed. by
Javier Esparza and Andrzej S. Murawski. Vol. 10203. Lecture Notes in Computer Science. 2017, pp. 534-549.
DOI: 10.1007/978-3-662-54458-7_31. URL: https://doi.org/10.1007/978-3-662-54458-7%5C_31.

Jong, Tom de and Martin Hotzel Escardé. “Domain Theory in Constructive and Predicative Univalent
Foundations”. In: 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, January 25-28,
2021, Ljubljana, Slovenia (Virtual Conference). Ed. by Christel Baier and Jean Goubault-Larrecq. Vol. 183.
LIPlcs. Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik, 2021, 28:1-28:18. DOI:
10.4230/LIPICS.CSL.2021.28.

20

https://doi.org/10.1007/978-3-662-54458-7_31
https://doi.org/10.1007/978-3-662-54458-7%5C_31
https://doi.org/10.4230/LIPICS.CSL.2021.28

	References

