
Initial Algebras of Domains via Quotient

Inductive-Inductive Types

Simcha van Collem, Niels van der Weide, Herman Geuvers

20 June 2025

Radboud University Nijmegen

1

Programming language semantics

• Domain theory is used to give semantics to programming

languages

• Example

• Fixpoints for general recursion

• Partial functions

• Lazy evaluation

• Nondeterminism

2

What about arbitrary algebraic effects?

• Algebraic effects have

• Algebraic operations

• An inequational theory

• How can we construct them in domain theory?

Solution: construct them as initial domain algebras

These domain algebras should be

• A domain

• Have the operations

• Obey the inequational theory

3

What about arbitrary algebraic effects?

• Algebraic effects have

• Algebraic operations

• An inequational theory

• How can we construct them in domain theory?

Solution: construct them as initial domain algebras

These domain algebras should be

• A domain

• Have the operations

• Obey the inequational theory

3

Contributions

• Framework for

• describing algebraic effects

• constructing them as initial algebras via a QIIT

• Examples:

• Partiality1

• Powerdomain

• Coalesced sum, Smash products, Coequalizer, ...

• Formalized in Cubical Agda

1Altenkirch, Danielsson, and Kraus, “Partiality, Revisited - The Partiality

Monad as a Quotient Inductive-Inductive Type”.

4

Directed Complete Partial Order (DCPO)

• DCPO: set D with information ordering ⊑
• Smaller elements contain less information

• Every directed family α : I → D has a supremum
⊔

i :I α(i)

• Generalizes ω-CPO, where every increasing sequence

α0 ⊑ α1 ⊑ . . . has a supremum

• The elements in the family are consistently moving upward

towards more information

5

Directed Complete Partial Order (DCPO)

• DCPO: set D with information ordering ⊑
• Smaller elements contain less information

• Every directed family α : I → D has a supremum
⊔

i :I α(i)

• Generalizes ω-CPO, where every increasing sequence

α0 ⊑ α1 ⊑ . . . has a supremum

• The elements in the family are consistently moving upward

towards more information

5

Partiality

• Programs may not terminate

• So a program has either no outcome or a specified result

• Given DCPO D, we want a DCPO D⊥, such that

• For each result d in D, we have the same result in D⊥; written

as η(d)

• We have a result for non-termination: ⊥ in D⊥

• Non-termination gives the least information

6

Partiality

• Programs may not terminate

• So a program has either no outcome or a specified result

• Given DCPO D, we want a DCPO D⊥, such that

• For each result d in D, we have the same result in D⊥; written

as η(d)

• We have a result for non-termination: ⊥ in D⊥

• Non-termination gives the least information

6

Summary:

Two operations:

• η : D → D⊥

• ⊥ : D⊥

One inequality:

• ⊥ ⊑ x

Nondeterminism

• Nondeterministic programs could have multiple results

• So a program has a set of possible results

• Given a DCPO D, we want a DCPO P(D) of possible results,
such that

• For each result d in D, we have the result set with a unique

result {d} in P(D)

• Given result sets s1, s2 in P(D), we can combine their results

as s1 ∪ s2 in P(D)

• The union operation is

• commutative and associative: order of combining does not

matter

• idempotent: combining a result set with itself, adds nothing

7

Nondeterminism

• Nondeterministic programs could have multiple results

• So a program has a set of possible results

• Given a DCPO D, we want a DCPO P(D) of possible results,
such that

• For each result d in D, we have the result set with a unique

result {d} in P(D)

• Given result sets s1, s2 in P(D), we can combine their results

as s1 ∪ s2 in P(D)

• The union operation is

• commutative and associative: order of combining does not

matter

• idempotent: combining a result set with itself, adds nothing

7

Summary:

Two operations:

• {−} : D → P(D)

• ∪ : P(D) → P(D) → P(D)

Four inequalities:

• x ∪ y ⊑ y ∪ x

• (x ∪ y) ∪ z ⊑ x ∪ (y ∪ z)

• x ∪ x ⊑ x

• x ⊑ x ∪ x

Algebras

We have

• A DCPO

• with Scott continuous operations

• operations of the form XB × C → X
}
Signature Σ

• respecting certain inequalities

We call this a Σ-algebra

• morphisms are Scott continuous maps commuting with the

operations

• this forms a category Σ-Alg

Goal:

• construct the initial Σ-algebra using a QIIT

8

Algebras

We have

• A DCPO

• with Scott continuous operations

• operations of the form XB × C → X
}
Signature Σ

• respecting certain inequalities

We call this a Σ-algebra

• morphisms are Scott continuous maps commuting with the

operations

• this forms a category Σ-Alg

Goal:

• construct the initial Σ-algebra using a QIIT

8

Scott continuity:

Operations should be monotone and send suprema to suprema, e.g.{⊔
i :I

α(i)

}
=

⊔
i :I

{α(i)}

Algebras

We have

• A DCPO

• with Scott continuous operations

• operations of the form XB × C → X
}
Signature Σ

• respecting certain inequalities

We call this a Σ-algebra

• morphisms are Scott continuous maps commuting with the

operations

• this forms a category Σ-Alg

Goal:

• construct the initial Σ-algebra using a QIIT

8

Quotient Inductive-Inductive Type (QIIT)

• Combination of QIT and IIT:

• Define a type by specifying constructors and equations

• Define a type A and a type family on A simultaneously

• Approach used by Altenkirch at al.2 to construct the partiality

effect

• We do it for arbitrary signature Σ

2Altenkirch, Danielsson, and Kraus, “Partiality, Revisited - The Partiality

Monad as a Quotient Inductive-Inductive Type”.

9

Powerdomain QIIT

We define P(D) : U and ⊑: P(D) → P(D) → U simultaneously

via a QIIT as follows:

• We have constructors expressing that ⊑ is a preorder

• We add a path constructor to make it a partial order

• We add constructors to make it directed complete

• Each operation gives rise to a constructor of P(D)

• We have a path constructor to express the continuity of each

operation

• Each inequality gives rise to a constructor for ⊑

10

Powerdomain QIIT

We define P(D) : U and ⊑: P(D) → P(D) → U simultaneously

via a QIIT as follows:

• We have constructors expressing that ⊑ is a preorder

• We add a path constructor to make it a partial order

• We add constructors to make it directed complete

• Each operation gives rise to a constructor of P(D)

• We have a path constructor to express the continuity of each

operation

• Each inequality gives rise to a constructor for ⊑

10

Powerdomain QIIT

We define P(D) : U and ⊑: P(D) → P(D) → U simultaneously

via a QIIT as follows:

• We have constructors expressing that ⊑ is a preorder

• We add a path constructor to make it a partial order

• We add constructors to make it directed complete

• Each operation gives rise to a constructor of P(D)

• We have a path constructor to express the continuity of each

operation

• Each inequality gives rise to a constructor for ⊑

10

Powerdomain QIIT

We define P(D) : U and ⊑: P(D) → P(D) → U simultaneously

via a QIIT as follows:

• We have constructors expressing that ⊑ is a preorder

• We add a path constructor to make it a partial order

• We add constructors to make it directed complete

• Each operation gives rise to a constructor of P(D)

• We have a path constructor to express the continuity of each

operation

• Each inequality gives rise to a constructor for ⊑

10

Powerdomain QIIT

We define P(D) : U and ⊑: P(D) → P(D) → U simultaneously

via a QIIT as follows:

• We have constructors expressing that ⊑ is a preorder

• We add a path constructor to make it a partial order

• We add constructors to make it directed complete

• Each operation gives rise to a constructor of P(D)

• We have a path constructor to express the continuity of each

operation

• Each inequality gives rise to a constructor for ⊑

10

Powerdomain QIIT

We define P(D) : U and ⊑: P(D) → P(D) → U simultaneously

via a QIIT as follows:

• We have constructors expressing that ⊑ is a preorder

• We add a path constructor to make it a partial order

• We add constructors to make it directed complete

• Each operation gives rise to a constructor of P(D)

• We have a path constructor to express the continuity of each

operation

• Each inequality gives rise to a constructor for ⊑

10

Powerdomain QIIT

We define P(D) : U and ⊑: P(D) → P(D) → U simultaneously

via a QIIT as follows:

• We have constructors expressing that ⊑ is a preorder

• We add a path constructor to make it a partial order

• We add constructors to make it directed complete

• Each operation gives rise to a constructor of P(D)

• We have a path constructor to express the continuity of each

operation

• Each inequality gives rise to a constructor for ⊑

10

Powerdomain QIIT (DCPO constructors)

x ⊑ x

x ⊑ y y ⊑ z

x ⊑ z isProp(x ⊑ y)

x ⊑ y y ⊑ x

x = y isSet(P(D))

⊔
:
∏

α:I→P(D) isDirected(α) → P(D)

α : I → P(D) δ : isDirected(α)∏
i :I

α(i) ⊑
⊔

i :I α(i)

α : I → P(D) δ : isDirected(α)∏
v :P(D)

isUpperbound(v , α) →
⊔

i :I α(i) ⊑ v

11

Powerdomain QIIT (DCPO constructors)

x ⊑ x

x ⊑ y y ⊑ z

x ⊑ z isProp(x ⊑ y)

x ⊑ y y ⊑ x

x = y isSet(P(D))⊔
:
∏

α:I→P(D) isDirected(α) → P(D)

α : I → P(D) δ : isDirected(α)∏
i :I

α(i) ⊑
⊔

i :I α(i)

α : I → P(D) δ : isDirected(α)∏
v :P(D)

isUpperbound(v , α) →
⊔

i :I α(i) ⊑ v

11

Powerdomain QIIT (DCPO constructors)

x ⊑ x

x ⊑ y y ⊑ z

x ⊑ z isProp(x ⊑ y)

x ⊑ y y ⊑ x

x = y isSet(P(D))⊔
:
∏

α:I→P(D) isDirected(α) → P(D)

α : I → P(D) δ : isDirected(α)∏
i :I

α(i) ⊑
⊔

i :I α(i)

α : I → P(D) δ : isDirected(α)∏
v :P(D)

isUpperbound(v , α) →
⊔

i :I α(i) ⊑ v

11

Powerdomain QIIT (Operations)

{−} : D → P(D) ∪ : P(D) → P(D) → P(D)

α1, α2 : I → P(D) isDirected(α1) isDirected(α2)⊔
i :I α1(i) ∪

⊔
i :I α2(i) =

⊔
i :I α1(i) ∪ α2(i)

α : I → D isDirected(α)

{
⊔

i :I α(i)} =
⊔

i :I{α(i)}

12

Powerdomain QIIT (Operations)

{−} : D → P(D) ∪ : P(D) → P(D) → P(D)

α1, α2 : I → P(D) isDirected(α1) isDirected(α2)⊔
i :I α1(i) ∪

⊔
i :I α2(i) =

⊔
i :I α1(i) ∪ α2(i)

α : I → D isDirected(α)

{
⊔

i :I α(i)} =
⊔

i :I{α(i)}

12

Powerdomain QIIT (Operations)

{−} : D → P(D) ∪ : P(D) → P(D) → P(D)

α1, α2 : I → P(D) isDirected(α1) isDirected(α2)⊔
i :I α1(i) ∪

⊔
i :I α2(i) =

⊔
i :I α1(i) ∪ α2(i)

α : I → D isDirected(α)

{
⊔

i :I α(i)} =
⊔

i :I{α(i)}

12

Powerdomain QIIT (Inequalities)

x ∪ y ⊑ y ∪ x (x ∪ y) ∪ z ⊑ x ∪ (y ∪ z)

x ∪ x ⊑ x x ⊑ x ∪ x

13

General QIIT

We define InitialΣ : U and ⊑: InitialΣ → InitialΣ → U as a QIIT

• Constructors for DCPO structure stay the same

• For every operation named a in Σ, we add a constructor

appa : (InitialΣ)
B × C → InitialΣ and constructors for its

continuity

• For every inequality in Σ, we add a constructor

14

Different notion of continuity

Recall: f : D → E is continuous if

• f is monotone

• f (
⊔

i :I α(i)) =
⊔

i :I f (α(i))

︸ ︷︷ ︸
Need monotonicity to show that f ◦ α is directed

Instead, we define continuity as follows3:

• f (
⊔

i :I α(i)) is a supremum for f ◦ α

3Jong and Escardó, “Domain Theory in Constructive and Predicative

Univalent Foundations”.

15

Different notion of continuity

Recall: f : D → E is continuous if

• f is monotone

• f (
⊔

i :I α(i)) =
⊔

i :I f (α(i))︸ ︷︷ ︸
Need monotonicity to show that f ◦ α is directed

Instead, we define continuity as follows3:

• f (
⊔

i :I α(i)) is a supremum for f ◦ α

3Jong and Escardó, “Domain Theory in Constructive and Predicative

Univalent Foundations”.

15

Actual constructors for operations and their continuity

appa : (InitialΣ)
B × C → InitialΣ

α : I → (InitialΣ)
B × C δ : isDirected(α)∏

i :I

appa(α(i)) ⊑ appa(
⊔

i :I α(i))

α : I → (InitialΣ)
B × C δ : isDirected(α)∏

v :InitialΣ

isUpperbound(v , appa ◦ α) → appa(
⊔

i :I α(i)) ⊑ v

16

Actual constructors for operations and their continuity

appa : (InitialΣ)
B × C → InitialΣ

α : I → (InitialΣ)
B × C δ : isDirected(α)∏

i :I

appa(α(i)) ⊑ appa(
⊔

i :I α(i))

α : I → (InitialΣ)
B × C δ : isDirected(α)∏

v :InitialΣ

isUpperbound(v , appa ◦ α) → appa(
⊔

i :I α(i)) ⊑ v

16

Actual constructors for operations and their continuity

appa : (InitialΣ)
B × C → InitialΣ

α : I → (InitialΣ)
B × C δ : isDirected(α)∏

i :I

appa(α(i)) ⊑ appa(
⊔

i :I α(i))

α : I → (InitialΣ)
B × C δ : isDirected(α)∏

v :InitialΣ

isUpperbound(v , appa ◦ α) → appa(
⊔

i :I α(i)) ⊑ v

16

Elimination

Elimination principles are as expected:

• For every Σ-algebra X , there exists an algebra morphism

InitialΣ → X

• Using the induction principle, we can show uniqueness

• Thus InitialΣ in indeed initial in Σ-Alg

17

Free algebras

To construct the free Σ-algebra for a DCPO D:

• Define signature Σ + D, by adding D → X

• Consider InitialΣ+D

• This is a Σ-algebra if we forget about the inclusion

• So F (D) = (InitialΣ+D)
−

• ηD : D → InitialΣ+D is given by the inclusion of InitialΣ+D

18

Conclusions

• Framework for describing algebraic effects via

• Operations

• Inequalities

• Construct them as initial algebras via a QIIT

• Free algebras

• Partiality, Powerdomain, Smash products, Coequalizers, ...

• Formalized in Cubical Agda

19

https://simchavc.github.io/artifacts/qiits/Paper.html

References

Altenkirch, Thorsten, Nils Anders Danielsson, and Nicolai Kraus. “Partiality, Revisited - The Partiality

Monad as a Quotient Inductive-Inductive Type”. In: Foundations of Software Science and Computation

Structures - 20th International Conference, FOSSACS 2017, Held as Part of the European Joint Conferences

on Theory and Practice of Software, ETAPS 2017, Uppsala, Sweden, April 22-29, 2017, Proceedings. Ed. by

Javier Esparza and Andrzej S. Murawski. Vol. 10203. Lecture Notes in Computer Science. 2017, pp. 534–549.

doi: 10.1007/978-3-662-54458-7_31. url: https://doi.org/10.1007/978-3-662-54458-7%5C_31.

Jong, Tom de and Mart́ın Hötzel Escardó. “Domain Theory in Constructive and Predicative Univalent

Foundations”. In: 29th EACSL Annual Conference on Computer Science Logic, CSL 2021, January 25-28,

2021, Ljubljana, Slovenia (Virtual Conference). Ed. by Christel Baier and Jean Goubault-Larrecq. Vol. 183.

LIPIcs. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021, 28:1–28:18. doi:

10.4230/LIPICS.CSL.2021.28.

20

https://doi.org/10.1007/978-3-662-54458-7_31
https://doi.org/10.1007/978-3-662-54458-7%5C_31
https://doi.org/10.4230/LIPICS.CSL.2021.28

	References

